İkinci ve Üçüncü Dereceden Denklemler

Ömer
Yönetici
İKİNCİ ve ÜÇÜNCÜ DERECEDEN DENKLEMLER

A. TANIM
a, b, c gerçel sayı ve a ¹ 0 olmak üzere,
ax2 + bx + c = 0
biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir.
Bu açık önermeyi doğrulayan x sayılarına denklemin kökleri; tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi; çözüm kümesini bulmak için yapılan işlemlere denklem çözme; a, b, c sayılarına da denklemin kat sayıları denir.

B. İKİNCİ DERECEDEN DENKLEMİN ÇÖZÜM KÜMESİNİN BULUNUŞU
1. Çarpanlara Ayırma Yöntemi
ax2 + bx + c = 0 denklemi f(x) . g(x) = 0
biçiminde yazılabiliyorsa
f(x) = 0 veya g(x) = 0 olup çözüm kümesi;
Ç = {x | x, f(x) = 0 veya Q(x) = 0 denklemini sağlar} olur.

2. Diskiriminant (D) Yöntemi
ax2 + bx + c = 0 denklemi a ¹ 0 ve D = b2 – 4ac ise, çözüm kümesi
ikinkesir01.png


ax2 + bx + c = 0
denkleminde, D = b2 – 4ac olsun.
a) D > 0 ise, denklemin farklı iki gerçel kökü vardır.
Bu kökleri,
ikinkesir02.png

b) D < 0 ise, denklemin gerçel kökü yoktur.
c) D = 0 ise, denklemin eşit iki gerçel kökü vardır.
Bu kökler,
ikinkesir03.png

Denklemin bu köklerine; eşit iki kök, çakışık kök ya da çift katlı kök denir.
Ü ax2 + bx + c = 0
denkleminin kökleri simetrik ise,
1) b = 0 ve a ¹ 0 dır.
2) Simetrik kökleri gerçel ise,
b = 0, a ¹ 0 ve a . c £ 0 dır.

C. İKİNCİ DERECEDEN DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ
BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,
ikinkesir04.png

ikinkesir05.png

ikinkesir06.png

ikinkesir07.png

ikinkesir08.png


D. KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN YAZILMASI
Kökleri x1 ve x2 olan ikinci dereceden denklem;
(x – x1) (x – x2) = 0 dır. Bu ifade düzenlenirse,
x2 – (x1 + x2)x + x1x2 = 0 olur.

Ü ax2 + bx + c = 0 ... (1) denkleminin kökleri x1 ve x2 olsun.
Kökleri mx1 + n ve mx2 + n olan ikinci dereceden denklem, (1) denkleminde x yerine
ikinkesir09.png
yazılarak bulunur.

Ü ax2 + bx + c = 0 ve dx2 + ex + f = 0 denklemlerinin çözüm kümeleri aynı ise,
ikinkesir10.png


Ü ax2 + bx + c = 0 ve dx2 + ex + f = 0
denklemlerinin sadece birer kökleri eşit ise,
ax2 + bx + c = dx2 + ex + f
(a – d)x2 + (b – e)x + c – f = 0 dır.
Bu denklemin kökü verilen iki denklemi de sağlar.

ÜÇÜNCÜ DERECEDEN DENKLEMLER
A. TANIM
a ¹ 0 olmak üzere, ax3 + bx2 + cx + d = 0 biçimindeki denklemlere üçüncü dereceden bir bilinmeyenli denklemler denir.

B. ÜÇÜNCÜ DERECEDEN DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ
BAĞINTILAR

a ¹ 0 ve ax3 + bx2 + cx + d = 0 denkleminin kökleri x1, x2 ve x3 olsun. Buna göre,
ikinkesir11.png

ikinkesir12.png

ikinkesir13.png


C. KÖKLERİ VERİLEN ÜÇÜNCÜ DERECE DENKLEMİN YAZILMASI
Kökleri x1, x2 ve x3 olan üçüncü derece denklem
(x – x1) (x – x2) (x – x3) = 0 dır.
Bu denklem düzenlenirse,
x3 – (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x – x1x2x3 = 0 olur.

Ü ax3 + bx2 + cx + d = 0 denkleminin kökleri x1, x2, x3 olsun.

1) Bu kökler aritmetik dizi oluşturuyorsa,
x1 + x3 = 2x2 dir.
2) Bu kökler geometrik dizi oluşturuyorsa,

ikinkesir14.png

3) Bu kökler hem aritmetik hem de geometrik dizi oluşturuyorsa,
x1 = x2 = x3 tür.
Ü n, 1 den büyük pozitif tam sayı olmak üzere,
anxn + an – 1xn – 1 + ... + a1x + a0 = 0
denkleminin;
Kökleri toplamı :
ikinkesir15.png

Kökleri çarpımı :
ikinkesir16.png
 
Son düzenleme:

Benzer Konular

Yanıtlar
1
Görüntülenme
3B
Yanıtlar
0
Görüntülenme
6B
Yanıtlar
0
Görüntülenme
7B
Yanıtlar
0
Görüntülenme
5B
Yanıtlar
0
Görüntülenme
6B
Üst