Uzay CoĞrafyasi

Coğrafya bölümünde yer alan bu konu pamuk prenses tarafından paylaşıldı.

  1. pamuk prenses

    pamuk prenses Harbi Prenses

    16 Mart 2004 — Adını Eskimo kültüründe okyanus tanrıçası Sedna’dan alan göktaşı, 10 bin 500 Dünya yılı ile Güneş Sistem’nin en uzun yörüngesine sahip.

    Gezegenin keşfi ile astronomlar arasında yeni bir tartışma başladı. Sedna’nın bir gezegen olup olmadığı üzerine kafa yürüten bilim adamları, bu şekilde gezegen kavramını ve Güneş Sistemi’nin de yapısal özelliklerini gözden geçiriyorlar.

    Güneş Sisteminin 10. Gezegeni 'Buz ve Kaya Krallığı' mı?

    Kısa adı NASA olan Amerikan Ulusal Havacılık ve Uzay Dairesi tarafından fırlatılan Sedna 4 teleskobu, Güneş Sistemi'nde yeni bir gezegen keşfetti.

    Eğer bulgular doğruysa, 74 yıllık '9 gezegen' bilgisi tarihe karışacak. BBC'de yayınlanan habere göre, NASA tarafından uzaya fırlatılan Sedna 4 teleskobu tarafından gönderilen bilgilerle, Plüton gezegeninden daha büyük olduğu sanılan yeni uzay cismi, ispat edilmesi halinde Güneş Sistemi'nin 10. gezegeni olacak. Ancak astronomlar, bu cismin halen Güneş Sistemi'nin bir üyesi olup olmadığını araştırıyorlar. Daha önce de Hubble Teleskobu tarafından tespit edilen cisimle ilgili detaylı bilginin bu hafta içinde NASA tarafından dünya kamuoyurna açıklanacağı kaydedildi. En son 1930 yılında varlığı ispatlanan Plüton gezegeninden bu yana Güneş Sistemi'nde 9 gezegen olduğuna dair bilim öğretisini alt üst edecek olan 'yeni gezegen', bilim adamları tarafından 'Buz ve Kaya Krallığı' olarak ifade ediliyor.



    GÜNEŞ SİSTEMİ’NİN SINIRINDA


    Sedna, 10 bin 500 Dünya yılı süren Güneş’in etrafında bir tam dönüşü esnasında, yıldıza sadece çok kısa bir süre için yaklaşıyor, ancak bi gezegenin ısınmasına yetmiyor.


    Gözlem adı 2003 VB12 olan Sedna kızıl parlak bir renge sahip; bilim adamları parlak kızıl rengin, gezegenin bulunduğu Güneş Sistemi’nin dış bölgeleri için oldukça olağandışı bir durum olduğunu belirtiyorlar. Dr. Brown, Sedna gibi Güneş Sistemi’nin sonu sayılacak bir mesafeden Güneş’in hissedilmediğini belirtti. Dr. Brown, Sedna gezegeninde bulunan bir kişinin Güneş’i toplu iğne ucu büyüklüğünde göreceğini ifade ediyor. Bilim adamları Sedna’nın yüzey ısısının -240 derece olduğunu ve bu değerin son 4.5 milyar yıldır değişmediğini belirlediler.



    GEZEGEN ‘MADEN’İ


    Sedna 1930’da Plüton’nun keşfinden sonra bulunmuş en büyük gök cismi. Kimi astronomlar Sedna’nın Plüton’dan da daha büyük olabileceğini tahmin ediyorlar. California Institute of Technology astronomlarından Prof. Michael Brown liderliğinde yürütülen bir araştırma projesi kapsamında keşfedilen Sedna, Dünya’dan 10 milyar kilometre uzaklıkta Kuiper Kuşağı olarak bilinen bölgede yeralıyor. Kuşakta bulunan binlerce göktaşından şimdiye dek yaklaşık 400 tanesi tam olarak keşfedildi.

    Sedna’nın da içinde bulunduğu Kuiper Kuşağı, astronomlar tarafından bir “maden” olarak nitenlendiriliyor. Yüzlerce buzdan göktaşı içeren Kiuper Kuşağı’nda, 2000’de Varuna (900 km), 2001’de Ixion (1.065 km) ve 2002’de Kuaoar (1.200 km) gezegensileri tespit edilmişti. Şubat ayında ise 1.800 km çapında, 2004 DW gözlem adı ile bir başka gezegensi keşfedilmişti.
    Bünyesinde binlerce benzer büyüklükte gök cisminin bulunduğu Kuiper Kuşağı Sedna veya daha büyük yeni keşiflere gebe bir bölge. Sedna’nın daha önce bulunan benzer göktaşlarından farkı kendi başına bir yörünge tutturmuş olması. Arizona’da bulunan Tenagra Gözlemevi gezegenin yörüngesini belirlemek üzere çalışmalara başladı.



    GEZEGEN’LİK TARTIŞMASI


    Sedna’nın keşfi gezegen kavramının sorgulandığı ve belki de yeniden tanımlanacağı tartışmaları da alevlendirdi. Bir grup astronom Plüton’nun dahi bir gezegen olmadığını düşünüyor. Yapılacak gözlemler sonunda, Plüton’u gezegen sayılması için yeterli koşulların Sedna için de geçerli olduğuna dair fikir birliği oluşursa, Güneş Sistemi’nin on gezegeni olacak. Bilim çevreleri, göktaşının bir gezegen olarak değer kazanmasının daha geniş gözlemler gerektirdiğinin altını çiziyorlar.
    Bunların başında da göktaşının bağımsız Güneş merkezli bir yörüngesi olması kuramı geliyor. Sedna’nın eliptik yörüngesinde Güneş’in etrafında tam dönüşünü 10.500 yılda tamamladığı belirtildi. Uzun çapı 135 milyar kilometre ile Sedna’nın yörüngesi Güneş Sistemi’ndeki en uzun yörünge.
    Gezegeni keşfeden Dr. Micheal Brown, göktaşını gezegen yerine, kaya ve buzdan oluşan ve hacmen daha ufak olan “gezegensi” (planetoid) olarak nitelemeyi tercih ediyor. Brown Sedna’nın yeterince yüksek bir yoğunluğa sahip olmadığını düşünüyor.
    Keşfi Havaii’deki Gemini Observatory’den Michael Brown ve Chad Trujillo ve San Diego’daki Palomar Gözlemevi’nden Yale Üniversitesi astronomu David Rabinowitz birlikte yaptılar. Ekip Sedna’nın etrafında dönen bir de uydusu olduğunu keşfetti.

    GÜNEŞ

    Güneş sisteminin merkezinde yeralan, en yakın yıldız, Dünya’dan ortalama 149.591.000 km uzaklıkta, 1,39 milyon km çapında, ışık saçan dev bir gaz küresi olan Güneş’in en önemli bileşeni hidrojendir; yaklaşık % 5 oranında helyum ve daha ağır elementleri içerir. 1,99x10(33) erg/saniye hızıyla enerji üretir. Bu enerji, en çok, görünür ışın ve kızılaltı ışınım olarak uzaya yayılır ve Yer’de yaşamın sürmesinin başlıca nedenidir.
    Çapları bin kat daha büyük ve kütleleri birkaç yüz kat daha ağır olan bilinen en büyük yıldızlara karşılaştırılınca, Güneş, astronomi sınıflandırmasında cüce yıldız sınıfına girer. Ama kütlesi ve yarıçapı, Gökadamız’daki (samanyolu) bütün yıldızların ortalama kütlesine ve büyüklüğüne yakındır; çünkü birçok yıldız Yer’den daha küçük ve daha hafiftir. Güneş, tayfı, yüzey sıcaklığı ve rengi nedeniyle, astronomlar tarafından kullanılan tayf türleri şemasında “G2 cüce” diye de sınıflandırılır. Yüzey gazlarının yaydığı ışığın tayf şiddeti, 5000 A’ya yakın dalga boylarında en büyüktür; güneş ışığının niteleyici sarı rengi bundan ileri gelmektedir.İçinde yaşadığımız Evren'i tanıma çabamız, binlerce yıldan bu yana sürüyor. Günümüzde, en modern teleskoplar sayesinde, Evren'in en uzak köşelerini, milyarlarca ışık yılı ötedeki gökadaları görebiliyoruz. Oysa, Evren'de küçücük bir nokta gibi kalan, içinde yaşadığımız Güneş Sistemi'miz hâlâ gizemlerle dolu.
    Uzay Çağı'nın başlangıcından bu yana yapılan çalışmaların büyük bölümü, Güneş Sistemi'ni keşfetmek içindi. Bugün, gerek bu çalışmalara gerekse çevremizdeki başka olası gezegen sistemlerine bakarak Güneş Sistemi'mizin oluşum öyküsünü anlatabiliyoruz.
    Güneş Sistemi'nin bir bulutsudan oluştuğu düşüncesini, aynı zamanda bir fizikçi de olan Prusyalı filozof, Immanuel Kant ortaya attı. Kant, ilkel Evren'in ince bir gazla dolu olduğunu canlandırdı düşüncesinde. Başlangıçta homojen dağılmış bu gazda, doğal olarak zamanla bir takım kararsızlıklar ortaya çıkmalıydı. Bu kütleçekimsel kararsızlıklar, kütlelerin birbirini çekmesine, dolayısıyla da gazın belli bölgelerde topaklaşmaya başlamasına yol açacaktı. Peki, bu topaklar neden disk biçimini alıyordu?
    Kant, bunu da çözdü. Başlangıçta çok yavaş dönmekte olan gaz topakları, sıkıştıkça hızlanıyordu. Bu, çok temel bir fizik ilkesine, "Momentumun Korunumu İlkesi" ne dayanır. Bu ilke, genellikle bir buz patencisi örneğiyle açıklanır: Kolları açık, kendi çevresinde dönen buz patencisi, kollarını kapadığında hızlanır.
    Benzer olarak, kütleçekiminin etkisiyle sıkışmaya başlayan gazlar da giderek hızlanır. Dönmenin etkisi gaz topağının incelerek bir disk biçimini almasını sağlar. İşte, bu disklerden birisi Güneş Sistemi'mizi oluşturmuştur.
    Güneş’le ilgili modern çalışmalar, Galilei’nin güneş lekelerine ilişkin gözlemleriyle ve bu lekelerin hareketlerine dayanarak Güneş’in dönüşünü bulmasıyla 1611’de başladı. Güneş’in büyüklüğüne ve Yer’den uzaklığına ilişkin ilk yaklaşık doğru belirleme, 1684’te yapıldı; bu belirlemede, Fransız Akademisi’nin 1672’de Mars’ın Yer’e yaklaşması sırasında yaptığı nirengi (üçgenleme) gözlemlerinden elde edilen veriler kullanıldı. Joseph von Fraunhofer tarafından 1814’te Güneş’in soğurma çizgili tayfının bulunması ve Gustav Kirchhoff tarafından 1859’da bunun fiziksel yorumunun yapılması, güneş astrofiziği çağını başlattı; bu dönemde, Güneş’i oluşturan maddelerin fiziksel durumunu ve kimyasal bileşimini etkili olarak inceleme olanağı doğdu. 1908’de George Ellery Hale, güneş lekelerinin güçlü magnetik alanlarını belirledi; 1939’da Hans Bethe, güneş enerjisinin oluşumunda nükleer füzyonun oynadığı rolü aydınlattı.
    Yeni gelişmeler, bilim adamlarının Güneş’le ilgili görüşlerini değiştirmeyi sürdürmektedir. Güneş rüzgarının doğrudan doğruya belirlenmesi 1962’de gerçekleştirilmiş, Güneş’in yüksek hızlı tekrarlanan akıntılarının kaynaklarıysa 1969’da taç (korona) deliklerine ilişkin gözlemlerle belirlenmiştir. Kant'ın bu düşüncesi, daha sonra birçok gökbilimci tarafından kabul gördü; ancak, herhangi bir yıldızın çevresinde böyle bir oluşum gözlenemediği için, 1980'lere değin bu düşünce, bir varsayım olarak kaldı, kanıtlanamadı. Sonra, gökbilimciler, T Boğa türü yıldızların, yaklaşık üçte birinin, normalin çok üzerinde kızılötesi ışınım yaydığını keşfettiler.
    Yıldızın etrafındaki toz bulutu, yıldızın yaydığı kısa dalgaboylu ışınımı soğuruyor; sonra daha uzun dalga boyunda, yani kızılötesi ve radyo dalga boylarında ışınım yayıyordu.
    Birkaç yıl sonra, gökbilimciler bazı yıldız oluşum bölgelerine radyo teleskoplarla baktıklarında yıldızların etrafındaki karanlık, toz içeren diskleri doğrudan görebildiler. Hubble Uzay Teleskopu'nun keskin gözleriyle yapılan gözlemlerde, 1600 ışık yılı uzaklıktaki Orion Bulutsusu'ndaki yıldız oluşum bölgeleri incelendi. Böylece, genç yıldızların etrafındaki gaz ve toz diskleri ilk kez görünür dalgaboyunda görüntülenmiş oldu.



    TERİMLER

    EVREN(KAİNAT):Madde ve enerjiden oluşan başı ve sonu olmayan sistemdir.

    UZAY:İçerisinde gök cisimleri bulunan sonsuz boşluktur.

    SAMANYOLU GALAKSİSİ:Güneş sistemimizin içerisinde yer aldığı yıldız topluluğudur.Bu galaksinin çapı yaklaşık 100.000ışık yılıdır.(Bir saniyelik ışık birimi 300.000 km’dir.

    YILDIZ:Isı ve ışık yayan gök cismidir.Güneş bir yıldızdır.

    GEZEGEN:Güneşten aldığı ısı ve ışığı yansıtan gökcismidir.

    1)İÇ GEZEGEN:Dünya ile güneş arasında bulunan Merkür ile Venüs gezegenleridir.Bu gezegenler güneş’e dünyadan daha yakındır.Kütleleri dünyadan küçüktür.

    2)DIŞ GEZEGEN:Güneş’e dünyadan daha uzak olan gezegendir.Güneş sistemi içerisindeki gezegenlerden; Güneş’e en yakın olanı Merkür, en uzak olanı Plütondur.En büyük olanı Jüpiterdir.Jüpiter henüz soğuyamamış gaz kütlesi halindedir.

    UYDU:Gezegenlerin etrafında dönen gök cisimleridir.Bunlarda güneş ışığı yansıtarak görülürler.

    KUYRUKLU YILDIZ:Güneş sistemi içinde yer alan ve etrafında irili ufaklı taşlar, gaz ve toz tabakası bulunan gök cisimleridir.

    METEOR:Uzayda gezegenlerin yada uyduların parçalanmasıyla oluşan taş parçalarıdır.

    Evrenin Oluşumu

    Uçsuz bucaksız gökyüzüne bakıp da hayran olmamak elde değildir. Çıplak gözle görülebilen sayısız yıldız bile evrenin ne kadar karmaşık bir yapıda olduğunu fark etmemiz için yeterli. Ama çıplak gözle gördüğümüz gökyüzü evrenin milyarda birlik bir kısmını bile temsil etmiyor. Gerçekte evren insan aklının almakta zorluk çekeceği bir büyüklüğe ve karmaşıklığa sahip. Güneş sistemini barındıran Samanyolu galaksisi dahil yaklaşık 100 milyar galaksiden ve sayısız gök cisminden oluşan devasa boyutlardaki evrenin çapı, devamlı genişlemeğe devam etmektedir. Evren büyüklüğü yanında, ilginçliği ve karmaşıklığı ile de akıl sınırlarını zorlamaktadır. Evrende var olan enerjinin sadece %10'luk kısmı tanımlana bilen maddelerden (gezegenler, yıldızlar, karadelikler ve çeşitli gazlar) oluşmaktadır, geri kalan enerjinin %90'lık kısmı "Karanlık madde" ismi verilmiş olan gözlemlenemeyen ve tanımlanamayan maddelerden oluşmaktadır. Bu denli büyük ve karmaşık olmasına rağmen, evrende var olan sayısız gök cismi eşi görülmemiş bir denge örneği göstermektedir. Evrenin tüm bu özellikleri kozmolojiyi bilim adamları için en popüler bilim dallarından biri haline getirmiştir. Şu an yaşamakta olan ve günümüze dek yaşamış tüm büyük bilim adamları evreni araştırmış ve özellikle teorik kozmoloji alanında çok büyük çalışmalar yapmışlardır.

    Big Bang Teorisi(Büyük Patlama)

    Bilim adamları böylesine kompleks bir yapıya sahip olan evrenin oluşumu hakkında tarih boyunca değişik fikirler ve teoriler ortaya atmışlardır. Fakat diğer konulardaki anlaşmazlıklara rağmen günümüzde evrenin başlangıcı konusu, bilim adamları arasındaki tam bir fikir birliği ile "Big Bang" adı verilen teoriye dayandırılmaktadır. Bu teori evrenin 10-20 milyar yıl önce "yoktan var edildiğini" ileri sürmektedir. Yani zamanımızdan 10-20 milyar yıl önce madde ve zaman yokken "Big Bang" adı verilen büyük bir patlama ile aniden madde ve zaman yaratılmıştır. "Big Bang" teorisi ilk olarak 1922 yılında Alexander Friedmann tarafından ortaya atıldı. O güne kadar evrenin durağan olduğunu savunan bilim dünyasının bu yeni teoriyi kabullenmesi hiçte kolay değildi. Çünkü bu teori evrenin, zaman ve maddeden bağımsız olan tüm boyutların üzerindeki bir güç tarafından yaratıldığı anlamına geliyordu. Aynı zamanda "maddenin sonsuzdan gelip sonsuza gittiğini" iddia eden materyalist felsefe kökünden çürütülmüş oluyordu. Özellikle materyalist bilim adamları bu teoriyi kabul etmek istemedi. Fakat "Big Bang" gerçeğini görmezlikten gelmek çok zordu. Ünlü astronom Edwin Hubble 1929 yılında yaptığı gözlemler sonucunda evrenin devamlı genişlemekte olduğunu ispatladı, bu ispat Big Bang teorisi için çok büyük bir kanıttı. Hubble'ın bu buluşu teorinin büyük bir bilim kesimi tarafından kabul görmesini sağladı, teoriyi kabullenmek istemeyen ve genişleyen evren modeline uygun değişik teoriler oluşturmaya çalışan bir kaç bilim adamı ise ancak1989 yılındaki "Big Bang" teorisinin kesin zaferine kadar dayanabildiler. Teorik hesaplamalara göre büyük patlamadan arda kalması gereken radyasyonu araştırmak üzere NASA tarafından 1989 yılında fırlatılan CUBE uydusu bu radyasyonu fırlatılışından sekiz dakika sonra belirleyerek "Big Bang" teorisini kesin olarak kanıtladı. Bu kanıttan sonra artarda gelen diğer kanıtlar teoriyi desteklemeğe devam etti. Evrendeki enerjinin bilinen kısmının büyük bölümü yıldızlarda, Hirojenin (H), füzyon sayesinde Helyuma (He) dönüşmesi ile oluşmaktadır. Bu enerji dönüşümü evrenin başlangıcından bu yana devam eden bir süreçtir. Eğer evren sonsuzdan beri var olsaydı hidrojenin tümünün helyuma dönüşmüş olması gerekirdi. Fakat şu an evrende var olan hidrojen, helyum oranı teorik hesaplamalara göre "Big Bang" 'den bu yana olması gerektiği gibidir. Bu ve benzeri bir çok delil "Big Bang" teorisinin güçlenerek ilerlemesini sağlamaktadır.

    Evrenin İlk Anları Ve Büyümesi

    Büyük patlamadan önce madde varolmadığına göre maddeye bağımlı olan zamanın varlığından da söz edilemez. Bu noktada bir fikir ayrılığı olmadığına göre Big Bang'den öncesinden söz etmemiz mümkün değil. Bizim inceleye bileceğimiz, büyük patlama anında neler oldu? Nasıl oldu da böylesine büyük bir patlama ile bu kadar kompleks yapıya sahip bir evren oluştu? gibi soruların cevaplarıdır. Bu soruları ancak teorik kozmoloji verilerine dayanarak yanıtlaya biliriz. Fakat elimizde gerekli veriler olmadığı için Big Bang anını açıklamakta fizik teorileri yetersiz kalıyor. Daha önceki anlarda neler olup bittiği konusunda henüz kesin deliller bulunmadığı için şu an en fazla patlamadan sonraki 0,00001'inci saniyeden bahsedebiliriz. Patlama anında ortaya çıkan muazzam sıcaklık, patlamadan 0.00001 saniye sonra kuarkların (atom altı parçacıkların) proton ve nötronları oluşturabileceği seviye kadar düştü, bu noktada tek atomdan oluşan ve en basit yapıya sahip element olan H (hidrojen) elementi oluştu. Patlamadan birkaç dakika sonra milyar derece cinsinden ifade edilebilecek değere düşen sıcaklık sayesinde "döteryum", "helyum" ve "lityum" elementleri oluşmaya başladı. "Büyük Patlama" anından sonraki genişleme hızı çok hassas bir değerdedir. Yapılan teorik hesaplamalara göre bu genişleme hızı, gerçekte olandan milyarda bir daha yavaş gerçekleşseydi muazzam kütle çekim etkisi ile evren kendi üzerine çökerek tekrar yok olacaktı. Tersi bir şekilde, evrenin genişleme hızı milyarda bir daha hızlı olsaydı atom altı parçacıklar atomu ve dolayısıyla evrende var olan gök cisimlerini oluşturamayacak şekilde dağılacaktı. İlk atomların ve elementlerin oluşmasından sonraki uzunca bir süre evren genişlemeye ve soğumaya devam etti evren yeteri kadar soğuduğunda kütle çekiminin etkisi ile gazlar yoğunlaşarak değişik gök cisimlerini oluşturmaya başladı. Evrende var olan hidrojen ve helyum dışındaki tüm elementler yıldızların oluşumundan sonra, bu yıldızların çekirdeğinde gerçekleşen nükleer tepkimler ile üretilmiştir. Bu gök cisimlerinin bir araya gelerek niçin galaksileri oluşturduğu henüz kesin olarak açıklanabilmiş değildir. Bunun açıklanması "kara enerji" ve "kara delik" olarak adlandırılan gök cisimlerinin tam olarak anlaşılmasına bağlıdır. Sonuç olarak bu günün bilimsel şartları ile kesin bir şekilde açıklayamadığımız bir süreç sonunda evren şu anki kompleks yapısına geldi ve her geçen saniye genişlemeye devam ediyor.

    Evrenin Yapısı

    Yazımızın başında da bahsettiğimiz gibi evren akıl almaz komplekslikte bir yapıya sahiptir. Evrenin bazı bölümlerinde çok büyük boşluklar varken, bazı bölümleri yoğun bir şekilde gök cisimleri ille doludur. İlk bakışta dağınık gibi görünen bu yerleşim şekli aslında Big Bang teorisinin ön gördüğü şekilde, homojen bir evreni oluşturmaktadır. Evren, 400 milyon ışık yılından daha geniş bir bölümü incelendiğinde homojenlik göstermektedir. Big Bang'den sonra hidrojen ve helyumdan oluşan gazlar kütle çekim enerjisi ve dönmelerinden kaynaklanan manyetik etkinin yardımı ile yoğunlaşarak değişik gök cisimlerini oluşturdular. Yine bu Büyük Patlama sonucunda oluşan ve "kozmik fon ışınımı" adı verilen radyasyon bütün evrene yayılmış durumdadır. Gök cisimlerinin yoğunluk gösterdiği bölgelere galaksi (gökada) adı verilmektedir. Kesin olmamakla beraber galaksilerin hemen hemen hepsinin merkezinde galaksiyi dengede tutan büyük bir karadelik varolduğu tahmin edilmektedir. Fakat yapılan inceleme ve hesaplamalar var olan karadelik ve diğer gök cisimlerinden kaynaklanan kütle çekim etkilerinin bu galaksileri bir arada tutmaya yetmeyeceği fark edilmiştir. Bu noktada teorik olarak var olan fakat tanımlanamayan ve gözlenemeyen başka bir maddenin varlığı bulunmuştur. Bilinen hiç bir fiziksel tanıma uymayan ve tamamen görünmez olan bu maddeye "karanlık madde" adı verilmektedir. Karanlık madde evrende var olan maddenin yaklaşık olarak %90'lık kısmını oluşturmaktadır. Karanlık maddenin dışında kalan ve tanımlana bilen gök cisimleri genel olarak gezegenler, meteorlar ve yıldızlardır. Ömrünü tamamlayan yıldızların ölümü ile oluşan beyaz cüceler, nötron yıldızları ve daha karmaşık bir yapıya sahip olan karadelikler evrenin en yoğun ve hakkında en az bilgi bulunan diğer cisimleridir. Ömrünü tamamlayan yıldızların "nebulla" adı verilen patlamaları sayesinde çekirdeğinde üretilen ağır elementler uzaya dağılır ve meteor şeklinde gezegenlerin üzerlerine yağar. Bu yolla demir gibi ağır elementler gezegenimize patlayan yıldızlardan bir hediye olarak gelmektedir.

    Evrenin gerçek yapısının şu an bilinenden daha karmaşık olduğu tahmin edilmektedir. Henüz açıklanamayan bir çok enerji şekli evrenin değişik bölümlerinde görev yapmaktadır. Örneğin yakın dönemdeki bir keşfe göre, evren giderek yavaşlaması gerekirken aksine hızlanan bir genişleme göstermektedir. Bu genişlemenin nedenini ve kaynağını bir türlü açıklayamayan kozmologlar bu güce "karanlık enerji" adını verilmiştir. Günümüzde çoğu hesaplara ve tahmine dayanan bir çok teori ileri sürülerek evrenin yapısı anlaşılmaya çalışılmaktadır. Fakat evreni tam olarak anlamak için çok geniş zaman dilimlerine uzanan ve belki de insan neslinin hiç birinin göremeyeceği kadar uzun sürecek inceleme ve gözlemlere ihtiyaç vardır. Tahminen, gelişen teknolojinin beraberinde getireceği ileri seviye teleskoplar ve geliştirilecek yeni gözlem sistemleri ile insan oğlu çok kısa zaman dilimleri içerisinde kozmoloji alanında bu gün olduğumuzdan çok daha büyük bilgilere sahip olacaktır.

    Samanyolu Galaksisi

    Şehir ışıklarından uzakta Ay'ın olmadığı açık bir gecede, gökyüzünü bir baştan öbür başa kuşatan puslu, parlak bir şeriti sık sık görebiliriz. Eski insanlar bunu sütyolu "Milkway" olarak isimlendirmişlerdir. Bugün, bu puslu şeritin Güneşin de içinde bulunduğu birkaç yüz milyon yıldızı içeren, disk şeklinde bir görünüm olduğunu biliyoruz. Bir teleskop ile Samanyolunu inceleyen ilk astronom Galileo, Samanyolunun sayısız yıldızlardan ibaret olduğunu keşfetti. 1780`li yıllarda William Herchel gökyüzünün 683 bölgeye ayırıp, bu bölgelerin her birindeki yıldızları sayarak Güneş'in Galaksideki yerini çıkarmaya çalıştı. Hershel, Galaksinin merkezine doğru yıldızların sayıca, büyük yoğunlukta olduğunu daha küçük yıldız yoğunluklarının ise Galaksinin sınırına doğru görüleceğini düşündü. Fakat, tüm Samanyolu boyunca kabaca, aynı yıldız yoğunlukları buldu. Buradan hareket ederek, Güneş'in Galaksimizin merkezinde bulunduğunu ortaya çıkardı. 1920` li yıllarda Hollandalı Astronom Kapteyn, çok sayıdaki yıldızların parlaklığını ve hareketlerini analiz ederek, Herschel`in görüşlerini doğruladı. Kapteyn`e göre Samanyolu yaklaşık 10 kpc (kiloparsek) çapında ve 2 kpc kalınlığında olup merkezi civarında Güneş bulunmaktadır. Hem Herschel hem de Kapteyn Güneş'in Galaksimizin merkezinde olduğu fikrinde yanıldılar. Trumpler, yıldız kümeleri ile ilgili çalışmalarında uzak kümelerin beklenildiğinden daha sönük göründüklerini keşfetti. Sonuç olarak, Trumpler yıldızlar arası uzayın mükemmel bir vakum olmadığını uzak yıldızlardan gelen ışığı absorblayan, toz ortamın olduğu sonucunu çıkardı. Bu toz partikülleri Galaksi düzleminde yoğunlaşmıştır.Yıldız ışığının, yıldızlararası ortam tarafından absorblanması sönükleşme olarak bilinir. Galaksi düzleminde yıldızlararası sönükleşme kiloparsek başına 2.5 kadirdir. Bir başka ifade ile, Dünya'dan 1 kpc uzakta, Samanyolunundaki bir yıldız yıldızlararası sönükleşmeden dolayı 2.5 kez daha sönük görülür. Galaksi merkezinde olduğu gibi yoğun yıldızlararası bulutların bulunduğu bölgelerde sönükleşme derecesi büyüktür. Gerçekte, görünür dalgaboylarında Galaksimizin merkezi bir bütün olarak görülemez. Herschel ve Kapteyni yanıltanda bu yıldızlararası sönükleşme idi. Sadece Galaksimizdeki en yakın yıldızları gözlemişlerdi. Üstelik yıldızların çok büyük bir kısmının Galaksimizin merkezinde bulunduğu fikrine sahip değillerdi. Yıldızlararası toz Galaksimizin düzleminde yoğunlaştığından dolayı, yıldızlararası sönükleşme buralarda daha çoktur. Shapley'in öncülüğünü yapmış olduğu, pek çok Astronom, Güneş'in Galaksi merkezinden olan uzaklığını ölçmeye giriştiler. Shapley, bugün için kabul edilen 28,000 ışık yılı bir uzaklığın yaklaşık üç katı kadar bir uzaklık hesapladı. Galaksi merkezi etrafında, su mazerleri ihtiva eden gaz bulutlarından elde edilen radyo gözlemlerine dayanan son hesaplara göre ise yaklaşık 23,000 ışık yılı bir uzaklık bulunmuştur. Galaksi merkezine olan uzaklık, diğer özelliklerin tespit edilebilmesinde bir ölçüdür. Galaksimizin disk kısmı 80,000 ışık yılı çapında 2,000 ışık yılı kalınlığındadır. Galaksimizin çekirdeği, yaklaşık 15,000 ışık yılı çapında olan merkezsel bulge (şişkin bölge) ile çevrilmiştir. Bu şişkin bölgenin şekli küreseldir

    Bugün için, Galaksimize ait altı tane bileşenden söz edilmektedir. Bunlar; İnce Disk, Kalın Disk, Halo, Şişkin Bölge, Karanlık Halo ve Yıldızlararası ortamdır. Karanlık halo ve yıldızlararası ortamın dışında bu bileşenlerde farklı türden yıldızlar bulunmaktadır. Halodaki yıldızlar, yaşlı ve metal bakımından fakirdir. Astronomlar bu yıldızları popülasyon II yıldızları olarak adlandırırlar. Halo çok az toz ve gaz ihtiva eder. Küresel kümeler ve RR Lyrae değişen yıldızları bu bileşende bulunmaktadır.

    Diskte bulunan yıldızlar ise, Güneş gibi genç ve metal bakımından zengin yıldızlardır. Bunlara popülasyon I yıldızları denir. Disk bileşeninde, çok miktarda gaz ve toz bulunur. Açık kümeler, emisyon nebulaları bu bileşenlerde bulunur.

    Galaksimizin diskinin mavimtrak olduğu anlaşılmıştır. Çünkü, diskten gelen ışıkta genç ve sıcak yıldızların radyasyonu hakimdir. Merkezdeki şişkin bölge popülasyon I ve popülasyon II yıldızlarının bir karışımını içermektedir. Bu bölge kırmızımtrak görülür. Nedeni ise, Galaksimizin bu bölgesinde daha soğuk kırmızı dev yıldızları bulunmaktadır. Galaksimizin düzleminde yıldızlararası toz, yıldızlardan gelen ışığı absorbladığı için Galaksimizin disk kısmının yapısının anlaşılması, radyo astronominin gelişmesine kadar beklemiştir.

    Radyo dalgaları, uzundalgaboylu oldukları için yıldızlararası ortamda absorblanmaya ve saçılmaya uğramadan bize kadar ulaşabilirler. Radyo ve optik gözlemler, Galaksimizin gaz ve tozdan ibaret spiral şekilli kollara sahip olduğunu ortaya çıkardı. Hidrojen evrende en bol bulunan elementtir. Hidrojen gazı gözlemlerinden Galaksimizin disk yapısı hakkında önemli ipuçları tespit edilmiştir. Hidrojen atomu, bir proton ve bir de elektrondan meydana gelir. Hidrojen atomu nötr halde yani elektronu temel seviyede iken, elektron ile aynı yönde (paralel) veya ters yönde (anti paralel) dönebilir. Proton ve elektron birbirine göre paralel döndüğü zaman ortamın toplam enerjisi, proton ve elektronun anti paralel döndükleri zaman ki toplam enerjisinden daha büyüktür. Protona göre paralel dönme hareketinde bulunan elektrona herhangi bir etkide bulunulursa, dönme yönü değişir. O zaman atomun toplam enerjisinde bir azalma meydana gelir. İşte bu sırada 21 cm dalgaboyunda bir ışınım yayınlanır.

    1951 de Harvard da Astronomlar yıldızlararası ortamdaki 21 cm lik bu radyo ışınımını tespit ettiler. Bu radyo ışınımı, (Şekil 4) den de görüleceği üzere, Galaksi diskinde 1,2,3 ve 4 noktalarındaki hidrojen bulutlarından gelmektedir. Galaksimizin farklı bölgelerindeki gazlardan gelen radyo ışınımları farklı dalgaboyları ile radyo teleskoplara ulaştığından, değişik gaz bulutlarını seçip ayırmak ve böylelikle Galaksimizin bir haritasını çıkartmak mümkündür. Galaksimizin 21 cm lik radyo gözlemlerinden, nötral hidrojen gazından itibaren, birçok yay biçiminde kollar çıkarılmıştır. Galaksimizin spiral yapısına ait en önemli ipuçları O , B yıldızları ve H II bölgelerinin haritalanmasından elde edilmiştir. Ayrıca, karbonmonoksit (CO) ihtiva eden molekül bulutlarındaki radyo gözlemleri, Galaksimizin uzak bölgelerinin haritasını çıkartmak için kullanılmıştır.

    Bütün bu gözlemler, Galaksimizin spiral bir kola sahip olduğunu göstermektedir. Güneş, Orion kolu olarak isimlendirilen spiral kollardan birinde bulunmaktadır. Sagittarius kolu, galaksi merkezi doğrultusunda bir yerdedir. Bu kol, yaz aylarında Samanyolunun Scorpius ve Sagittarus boyunca uzanan kısmına bakıldığında görülebilir. Kış aylarında ise Perseus kolu görülebilir. İki büyük koldan diğer ikisi ise Centaurus ve Cygnus koludur.

    Spiral kollar, Galaksinin döndüğünü akla getirmektedir. Galaksimiz dönmese idi, bütün yıldızlar Galaksimizin merkezine düşerdi. Galaksimizin dönmesini hesap etmek zor bir iştir. Hidrojen gazından yayınlanan 21cm lik radyo gözlemleri, Galaksinin dönmesi hakkında önemli ipuçları sağlar. Bu gözlemler, Galaksimizin katı bir cisim gibi dönmediğini oldukça diferansiyel olarak döndüğünü açık olarak göstermektedir. İsveçli Astronom Lindblad, Galaksi merkezi etrafında yörüngesi boyunca Güneş'in hızının 250 km/sn olduğunu çıkarttı. Güneş bu hız ile Galaksimizin etrafını ancak 200 milyon yılda dolanabilir. Bu da Galaksimizin ne kadar büyüklükte olduğunu gösterir. Güneş'in Galaksimizin etrafındaki yörüngesini bilirsek, Galaksimizin kütlesini Keplerin üçüncü kanunundan hesaplayabiliriz.

    Buradan Galaksimizin kütlesinin, Güneş'in kütlesinin 1.1x1011 katı olduğu bulunmuştur. Bu kütle çok küçüktür. Çünkü Kepler kanunu, bize sadece Güneş'in yörüngesi içersindeki kütlesini verir. Güneş'in yörüngesinin dışarısındaki madde, Güneş'in hareketinin etkilemez ve böylelikle Keplerin üçüncü kanununa yansımaz. Bugün, hala Galaksimizin gerçek sınırı tespit edilemedi mutlaka şaşırtıcı bir madde miktarı, Galaksinin halosunun çok ötesinde uzanan küresel dağılım halinde Galaksimizi kuşatmalı. Bu maddeden dolayı, Galaksinin toplam kütlesi en azından Güneş kütlesinin 6 x 1011 katı veya daha fazla olabilir. Galaksimizin halosunun ötesindeki bu madde çok karanlıktır. Bunun için bu bölgeye "Karanlık Madde" adı verilir. Bu bölgede yıldız yoktur, ve varlığı çekim kuvvetinin varlığından anlaşılmaktadır.
     
    Son düzenleme: 29 Mart 2008